

Faculté de foresterie, de géographie et de géomatique

Modified Lignin for Advancing the Properties of particleboards containing UF adhesive

Anass AIT BENHAMOU, Ingrid CALVEZ, Véronic LANDRY

Department of Wood and Forest Sciences, Renewable Materials Research Centre (CRMR), Laval University, Quebec, Canada

ACS SPRING 2025

I. Introduction: Towards sustainable materials

I. Introduction: Wood-based composites

Worldwide annual production of about 416 million cubic meters in 2016*

- Availability from several sources
- **□** Nature origin
 - Non-toxicity
 - **l** Good dimensional stability

Oriented strand board (OSB)

Medium density fiberboards (MDF)

Plywood

Particleboard

I. Introduction: Most used adhesives

- The panel industry, is the larger user of products based on formaldehyde
- More than 50% of the formaldehyde produced in the world is used in the production these resins

Melamine urea formaldehyde (MUF)

I. Introduction Synthetic adhesive - Source and toxicity

Major source of formaldehyde based adhesives

V. Hemmila et al., (2017), Royal society advances, 10.1039/c7ra06598a

UF + + 300-400 ++++
PF ++ ++ 500-750 +++
MUF +++ ++ 500-1000 +++
pMDI +++ ++ 1500 -

Context of the current work

Statistics and History of Lignin in UF adhesive

Annual number of scientific publications in the last decade, Using the following keywords **Lignin** and **UF** adhesive, in Web of Science

Historically

First introduction of Lignin in UF adhesive has been performed in the 1994th by Chen et al at University of Quebec at Trois-Riviéres,

Modified Lignosulfonate as Adhesive

RUBIE CHEN* and QUOXIONG WU

Pulp & Paper Research Centre, University of Québec at Trois-Rivières, Trois-Rivières, Québec, Canada G9A 5H7

Bibliography on Lignin in UF adhesive

According to web of science using the following keywords: Lignin and UF adhesives.

- 1. Oxidized lignosulfonate (30-40 wt.%) + UF → Positive effect on IB and TS (1994)
- 2. Glyoxalated soda bagass lignin (10-20 wt.%) during UF synthesis → Improved WA, SS and decreased FE of plywood (2015)
- 3. Phenolated kraft lignin (10-20 wt.%) during UF synthesis → Less FE with no changes in IB of the Particleboards (2016)
- **4. Ionic liquid modified lignin** (10-20 wt.%) during UF synthesis → Improved SS, lower WA and FE of <u>plywood</u> (2017)
- 5. Nanoclay (0.5-1 wt%) + Glyoxalated lignin-UF adhesive → Improved MOE, MOR, IB and Less FE of Particleboards (2017)
- 6. pMDI (2-6 wt%) + **Ionic liquid lignin- UF adhesive** → Improved SS in wet and dry states, lower FE of <u>plywood</u> (2018)
- 7. Hydroxymethylated sulfite liquor + UF resin Less FE with no Improvement in mechanical ppt of Particleboards (2019)
- 8. commercial Sulfonated kraft lignin + UF resin → Improved thermal behaviour of the resins (2019)
- 9. Amphiphilic Lignosulfonate (20 wt%) + UF -> SS and FE was not influenced of the elaborated plywood (2020)
- **10. Hydroxymethylated–maleated lignin** + UF → Improved tensile ppt of <u>plywood</u> (5%) and MDF (7.5%) with less FE (2020)
- **11. Mg/Na-Lignosulfonate** (0-100 wt%) + UF → 30% of Na-LS highly decrease FE with no effect on tensils ppt of PB (2021)
- **12. Ammonium-Lignosulfonate** + UF → 10% showed best tensile ppt and less FE of <u>Particleboards</u> (2019)
- **13.** Alkali lignin from bagass (5-15 wt%) + UF → 10% leads to improved tensile ppt and less FE of Particleboards (2021)
- **14.** Lignosulfonate + UF → 6% leads to improved MOR, MOE and less WA, TS and FE of Particleboards (2021)
- **15. Aceton fractionated kraft lignin** + UF → Soluble lignin Showed great potential as green additive in UF (2023)
- **16. Soda and Kraft lignin (20-40 wt%)** + UF → 20% leads to improved MOR, MOE, IB and FE of <u>Particleboards</u> (2023)
- **17.** Alkali lignin from weeds (5-20 wt%) + UF → 15% leads to improved MOR, MOE, IB and less FE of Particleboards (2023)
- 18. Commercial **Lignin** (5%) and **Lignosulfonate** (10%) + UF → Acceptable physical and mechanical properties of <u>elaborated</u> panels as well as in improvement in fire resistance properties (2023)

Chemical modifications of lignin in Wood adhesives

To our knowledge No work presented till now a Phosphorylation of Lignin to be applied in UF adhesives !!!

Summary of the most applied chemical reactions for the functionalization of lignin in adhesives

Peng et al., Chemsuschem (2023), doi.org/10.1002/cssc.202300174

Lignin Phosphorylation: Stat of the art

Historically

Lignin structure have been widely functionalized since the 1980's by different chloro-phosphorus containing-compounds through Williamson reaction for different applications*

^{*}Illy el al., (2015), Phosphorylation of bio-based compounds: state of the art\ Polymer Chemistry 10.1039/C5PY00812C

Lee et al., 2022 10.1002/app.52519

FTIR analysis

-Appearance of new peaks correspond to C-O-P (515cm⁻¹), P=O (778cm⁻¹); P-OH (918cm⁻¹) indicative of the successful phosphorylation of kraft lignin

-Usually, phosphate moieties do not show intense bands in the IR spectroscopy*

*G. Nourry, et al, Cellulose 23 (6) (2016) 3511–3520.

Solid state ³¹P NMR analysis

-As expected, no peak corresponding to phosphorus was present in the spectrum of unmodified Kraft Lignin,

-Referring to literature data, An intense signal between **10 and 0 ppm** is attributed to the orthophosphate groups and a medium intense signal between **-5 and -10 ppm** is due to the presence of pyrophosphate groups. ^{2,3}

-After phosphorylation, the content of **phenolic** and **aliphatic** hydroxyl groups in KL decreased significantly and nearly 60% after phosphorylation

²Ablouh et al., (2021) RSC Advances, 10.1039/d1ra02713a

³Barbara J. Cade-Menun (2004), Talanta, 10.1016/j.talanta.2004.12.024

XPS analysis

- -As expected, no peak corresponding to phosphorus was present in the spectrum of unmodified Kraft Lignin,
- -Referring to literature data, a new peaks was found at 135 eV for P 2p in the spectrum of the PKL, indicating that the phosphate group was successfully introduced onto the lignin molecule. The appearance of N 1s at 401 eV was also found in PKL. *
- Probable formation of carbamate (-NH-CO-O-) group on lignin due to the presence of Nitrogen on its structure.

*Barbara J. Cade-Menun (2004), Talanta, 10.1016/j.talanta.2004.12.024

Lignin Phosphorylation: Results SEM analysis

SEM observations and elemental analysis

*CNS and ICP analysis confirmed the obtained data in SEM and NMR analysis

	C (%)	N (%)	S (%)	P (ug/g)
Kraft Lignin	66.605	0.38944	1.78	<lqm< td=""></lqm<>
P-Lignin	59.656	4.2215	1.44	14888

TGA analysis

- 1. -Low onset temperature after phosphorylation,
- 2. -High residual mass loss formation even before the chemical modification due to the presence of Sulfate groups ($[SO_4^{2-}] = 369 \mu g/g$) in the structure of lignin,
- 3. -The phosphate insertion plays an important role in giving a fire-retardant behaviour to the lignin ($[PO_4^{2-}] = 14888 \, \mu g/g$),

Lignin UF formulation: Results

formulation

Physico-chemical analysis of all formulations

Formula (%)	Solid content (%)	рН	Gel time (s)	SD (±)
UF 0	70.11	8.12	132	13
UFK 10	70. 95	8.15	163	18
UFP 10	70.96	8.32	125	10

Lignin UF formulation: ResultsDSC analysis of UF + kraft lignin

- 1. Neat UF had an exothermic curing peak of 84°C, which can be attributed to the heat released from the polycondensation reaction of primary amino groups of free urea with hydroxymethyl groups *,
- The curing temperature increased regardless of the addition level, which indicates a lower reactivity of **Kraft Lig** *

Sample code	Curing peak temperature (°)	Heat of curing reaction (J/g)
UF 0	84.34	86.84
UFK 10	88.54	70.85
UFP 10	84.41	97.27

IV. Wood adhesive development and bounding application

Density profile of the panels

Targeted Density was 700 kg/m³

(b)

736.2852

UFP-10

Mechanical properties

MOE: modulus of elasticity, MOR: Modulus of resistance, IB: Internal bounding

Physical properties

Thickness swelling (TS) and water absorption (WA) After immersion in water (20°C) for 24h According to the ASTM D1037-12(2020) Standard

Formaldehyde Emissions

According to the ASTM D6007 standard for small chambers

- HCHO ppm tells you how much formaldehyde is in the air of the chamber.
- ER mg/(m²·h) tells you how fast the formaldehyde is being emitted from the material's surface into the air.

Fire retardant properties

according to ASTM E1354

- PhRR indicates the maximum rate at which a material releases heat during combustion
- THR It represents the total amount of energy released over the entire burning period

Conclusions

Wood-Based Composite Panel Research Consortium (COREPAN-Bois),

Acknowledgement

Project Partners:

University (2)

Industrials (4)

Research Council of Canada (2)

Ressources naturelles et Forêts

Québec

