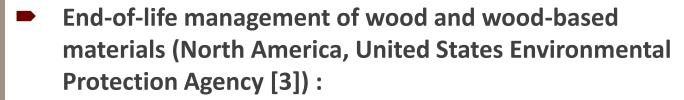


5TH EUROMAGH BIOCOMPOSITES 2025 BIOBASED MATERIALS FOR CIRCULAR ECONOMY MAY 15-17, 2025-DJERBA

Effect of hydrothermal recycling on the physicochemical properties of fibers recovered from medium-density fiberboard (MDF) waste

<u>Lecoublet Morgan^{1*}, Rosilei Garcia², Alain Cloutier² and Ahmed Koubaa¹</u>


*Correspondence to: lecm57@ugat.ca

¹ Forest Research Institute, Université du Québec en Abitibi-Témiscamingue (UQAT), Rouyn-Noranda, QC, Canada

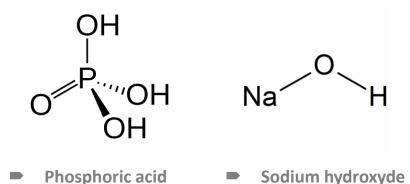
² Renewable Materials Research Centre (CRMR), Faculty of Forestry, Geography, and Geomatics, Université Laval, Québec, QC, Canada

■ In 2023, Canada produced 3.2 million m³ of wood panels, including 900,000 m³ of medium-density fiberboard (MDF) [1].

- Landfill (82 %)
- Incineration (18 %)
- Recycling (< 1 %)</p>

■ Wood panel waste [2]

- Wood panels can be recycled, allowing their components to be reintegrated into a new material manufacturing cycle
 - Mechanical recycling
 - √ Fast and cheap
 - X Cannot remove UF resin


Mechanical recycling

- Hydrothermal recycling
 - ✓ Can remove UF resin
 - X Energy consuming

Pressure reactor

- Chemical hydrolysis recycling
 - ✓ Can also remove UF resin
 - X Uses potentially expensive and toxic chemical products

Recycle MDF wood panels by hydrothermal recycling

- > Technical feasibility
- ➤ The recovered fibers will be characterized by several methods

Manufacture and optimization of wood-polymer composites produced with recovered fibers

- > Technical feasibility
- Multiphysical characterization of composites and process optimization

Optimize the recycling parameters for the manufacture of wood-polymer composites

- ➤ Influence of time, temperature and concentration of weak mineral acids on recovered fibers properties
- ➤ What is the best compromise for recovering the bestperforming wood fibers for the manufacture of woodpolymer composites?

Recycle MDF wood panels by hydrothermal recycling

- > Technical feasibility
- ➤ The recovered fibers will be characterized by several methods

Manufacture and optimization of wood-polymer composites produced with recovered fibers

- Technical feasibility
- Multiphysical characterization of composites and process optimization

Optimize the recycling parameters for the manufacture of wood-polymer composites

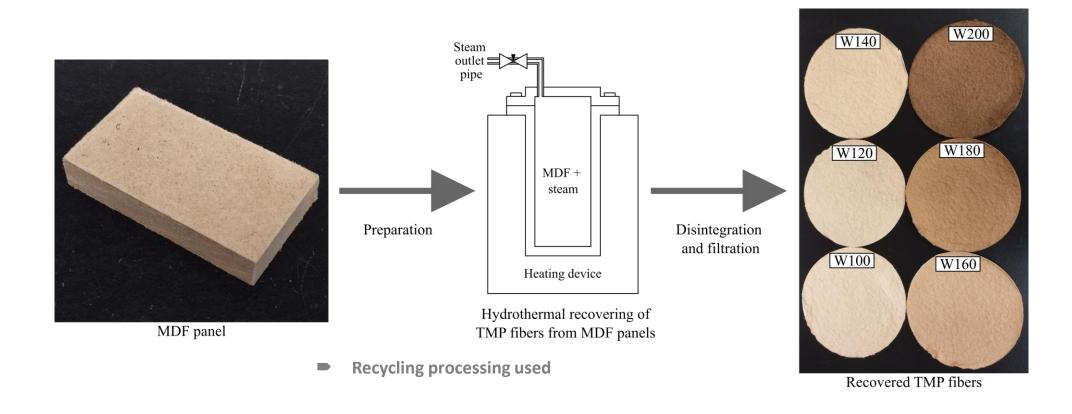
- Influence of time, temperature and concentration of weak mineral acids
- What is the best compromise for recovering the bestperforming wood fibers for the manufacture of woodpolymer composites?

Thickness 9,8 mm

Density 790 kg·m⁻³

UF content Unknow, supposed 10 ~ 12 %

Weight ~ 10 g


Liquid/solid ratio 20/1

Recycling temperature 100 – 200 °C

20 min

Use waste MDF as raw material

MDF and recycling parameters

Recycling time

Condition	T (°C)	Pressure (Bars)	Severity degree	Fiber yield (%)
W100	100	> 2	1.30	81.2
W120	120	> 2	1.89	79.6
W140	140	2	2.48	76.6
W160	160	5	3.07	76.3
W180	180	9	3.66	72.7
W200	200	14	4.25	67.9

Produced conditions

Severity degree: parameter representing the intensity of recycling applied

Severity degree =
$$Log R_0 = t \times e^{\left(\frac{T-100}{14.75}\right)}$$

Morphological characterization

- Fiber size distribution
- Spectrocolorimeter

► Konica Minolta CR-410

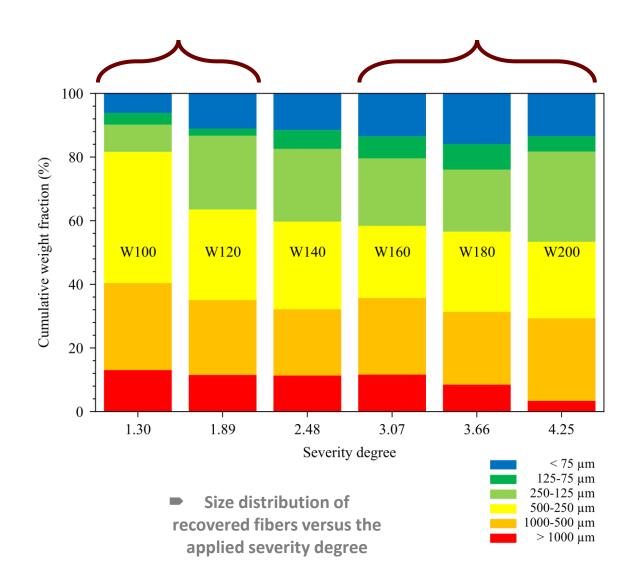
Thermal characterization

Thermogravimeric analyzer

■ TA Q50 thermogravimetric analyzer

Chemical characterization

- Nitrogen analyzer
- FTIR analyzer

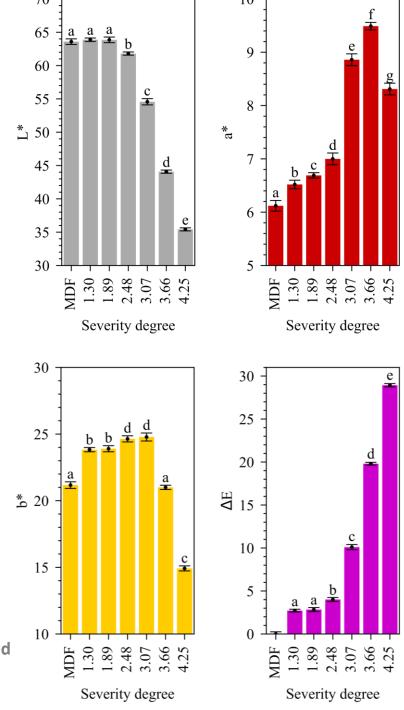


■ Shimadzu IR-Tracer-100

Global reduction in fiber size with the applied severity degree

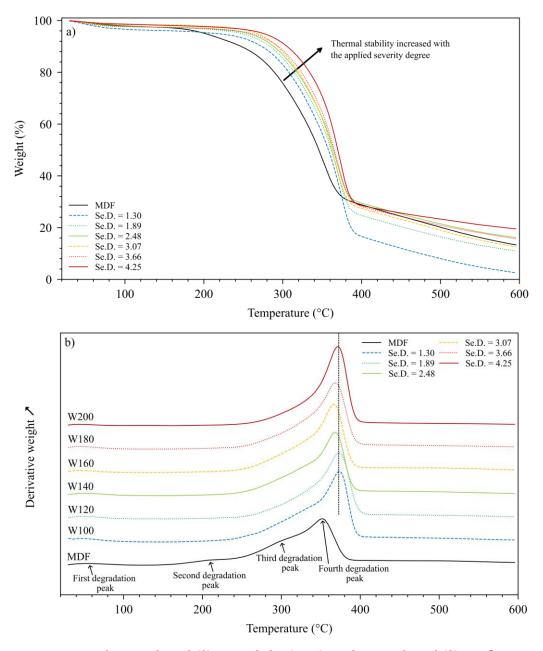
■ Two notable transitions

- W100 W120 : The severity degree applied achieves complete separation of the TMP fibers previously bonded by UF resin.
- W160 W200 : Potential degradation of lignocellulosic matter, allowing a better individualization of wood fibers.


Color difference ΔΕ

- Quantifies the difference between two colors (raw MDF as reference)
- If $\Delta E < 5$, can be considered as barely visible

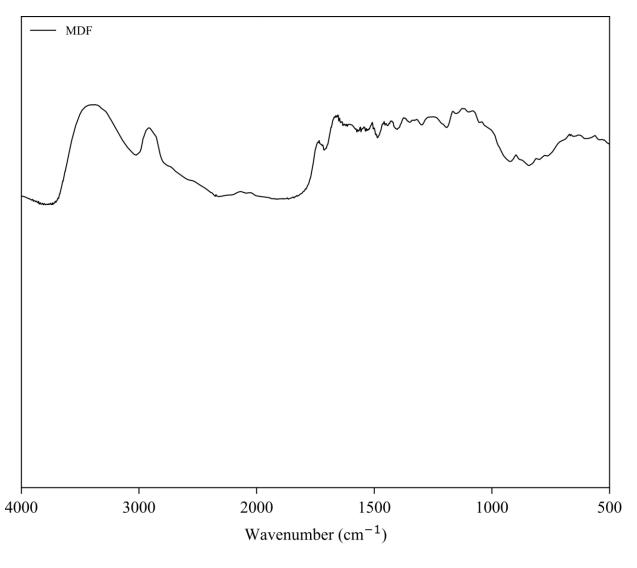
$$\Delta E = \sqrt{(L_2^* - L_1^*)^2 + (a_2^* - a_1^*)^2 + (b_2^* - b_1^*)^2}$$


- Under a severity degree of 2.48: slight color alteration, but above 2.48, significant variation
- Different applications possible :
 - ► Low severity degree : wood/polymer composite and MDF
 - High severity degree : cardboard

L*, a*, b* and ΔE components of recovered fibers versus the applied severity degree

- MDF shows 4 degradation peaks
 - Water, UF resin hemicellulose and cellulose
 - Lignin slightly visible

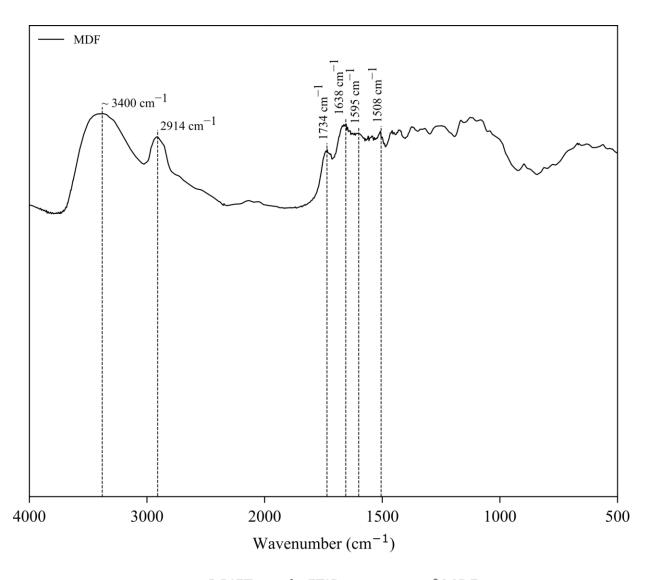
- Increasing the applied severity degree increases the thermal stability of recovered fibers
 - Loss of UF resin and hemicellulose, components with lower thermal stability than cellulose
 - Results to be confirmed with surface chemical analysis



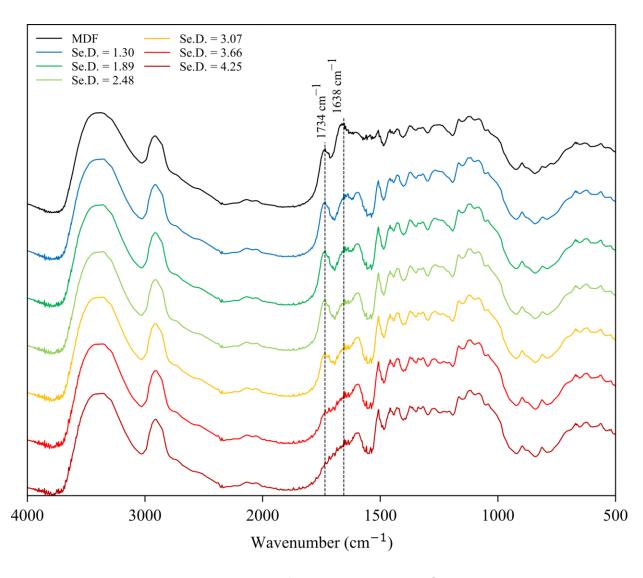
Thermal stability and derivative thermal stability of recovered fibers versus the applied severity degree

- MDF contains around 12 % of UF
- All recycling efficiently removes UF resin
 - Removed UF resin > 80 %
- Interesting behavior regarding the effect of severity degree
 - Decrease of the N content until a severity degree of 2.48, then increase until a severity degree of 4,25
 - Loss of lignocellulosic components ?
 - In accordance with previous tests

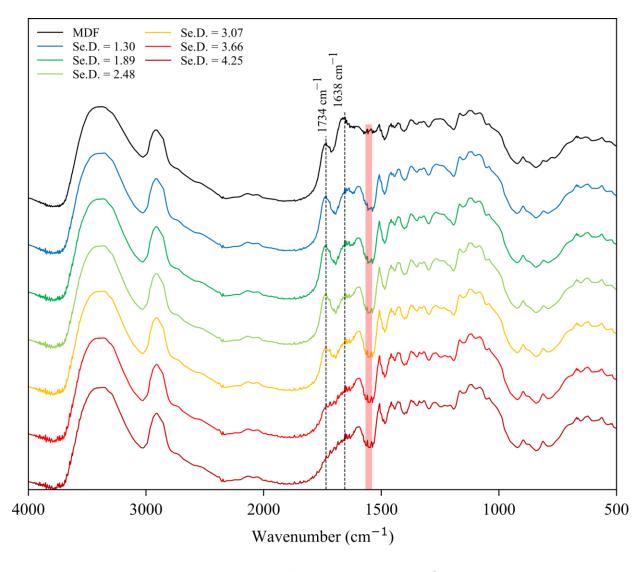
Condition	Severity degree	Nitrogen content (%)	UF resin content (%)	Removed UF (%)
MDF	n.d.	3.75 ± 0.05 (a)	12.53 ± 0.15 ^(a)	n.d.
W100	1.30	0.92 ± 0.05 (b)	3.07 ± 0.17 (b)	- 79.1
W120	1.89	0.60 ± 0.01 (c)	1.99 ± 0.04 (c)	- 87.9
W140	2.48	0.33 ± 0.01 (d)	1.11 ± 0.02 (d)	- 95.0
W160	3.07	0.45 ± 0.06 (cd)	1.50 ± 0.20 (a)	-91.9
W180	3.66	0.58 ± 0.03 (c)	$1.94 \pm 0.10^{\text{(a)}}$	- 88.3
W200	4.25	0.70 ± 0.02 (d)	2.32 ± 0.07 (a)	- 85.2


Nitrogen analyzer results

DRIFT-mode FTIR spectrum of MDF

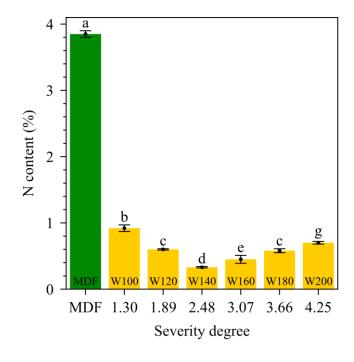

Wavenumber (cm ⁻¹)	Spectral peak analysis	Reference
3400	–OH stretching of cellulose	[6]
2914	C–H stretching of cellulose	[4,6]
1734	C=O stretching of hemicellulose	[5]
1638	C=O, C-N of primary amide UF, adsorbed water	[3,4,6,7]
1595	C=O of secondary amide UF	[3]
1508	C=C stretching vibration aromatic ring skeleton in lignin, C-N peak of secondary amide UF	[3,5,7]

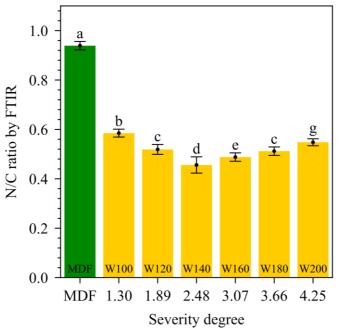
Key MDF peaks


DRIFT-mode FTIR spectrum of MDF

- The hydrothermal recycling does not appear to chemically affect cellulose and lignin
 - No significant changes
- Two peaks were affected
 - 1734 cm⁻¹ Hemicellulose
 - ► ~ 1640 cm⁻¹ Lignin + water

DRIFT-mode FTIR spectrum of MDF and recovered fibers


- The hydrothermal recycling does not appear to chemically affect cellulose and lignin
 - No significant changes
- Two peaks were affected
 - 1734 cm⁻¹ Hemicellulose
 - ► ~ 1640 cm⁻¹ Lignin + water
- Presence of a zone of interest in the spectrum
 - ► ~ 1550 cm⁻¹, appearing to be resin-related
 - Need to confirm this observation by comparing these results with previously determined nitrogen analysis



DRIFT-mode FTIR spectrum of MDF and recovered fibers Determination of UF resin / cellulose ratio :

Ratio N/C =
$$\frac{I_{depression @ 1550 cm^{-1}}}{I_{cellulose @ 2930 cm^{-1}}}$$

- The N/C ratio gives similar values compared to the previously determined nitrogen content.
 - Same statistical results
- Infrared analysis can be a fast, non-destructive method for predicting the nitrogen content of our recycled fibers.
 - More work need to be conducted

- ✓ Physical analyses showed that the degree of severity had a negative impact on fiber size, but also a positive impact on the thermal stability of the recovered fibers
- ✓ Spectrocolorimetric analyses showed that the fibers only began to change color perceptibly at temperatures of 160°C and above
- **✓** Chemical analyses confirmed the effectiveness of the treatment applied to remove the UF resin
 - ✓ UF resin removal efficiency > 80 %

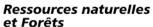
- **■** Short-term: Use of industrial weak acid to improve fiber individualization
- Medium-term: Optimization of the recycling process assisted by industrial weak acid to produce wood/polymer composites
- Long-term: Manufacture and optimization of wood/polymer composites with the fibers produced

Wood/polymer composite prototypes produced with PP and recycled wood fibers treated with an industrial weak acid

THANK YOU

Consortium de recherche sur les panneaux composites à base de bois

Faculté de foresterie. de géographie et de géomatique



Conseil de recherches en sciences naturelles et en génie du Canada

Natural Sciences and Engineering Research Council of Canada

References

- [1] FAOSTAT [WWW Document], 2025, URL HYPERLINK (accessed 5.1.25).
- [2] Advancing Sustainable Materials Management: 2018 Fact Sheet, 2020 HYPERLINK
- [3] Lubis MAR, Hong M-K, Park B-D, Lee S-M. Effects of recycled fiber content on the properties of medium density fiberboard. Eur J Wood Prod 2018;76:1515–26. HYPERLINK
- [4] Lubis MAR, Hong M-K, Park B-D. Hydrolytic Removal of Cured Urea—Formaldehyde Resins in Medium-Density Fiberboard for Recycling. Journal of Wood Chemistry and Technology 2017;38:1–14. HYPERLINK
- [5] Wang S, Hou X, Sun J, Sun D, Gao Z. Efficacy and Functional Mechanisms of a Two-Stage Pretreatment Approach Based on Alkali and Ionic Liquid for Bioconversion of Waste Medium-Density Fiberboard. Molecules 2024;29:2153. <a href="https://example.com/html/memory.com/ht
- [6] Savov V, Antov P, Panchev C, Lubis MAR, Lee SH, Taghiyari HR, et al. Effect of Hydrolysis Regime on the Properties of Fibers Obtained from Recycling Medium-Density Fiberboards 2023 <u>HYPERLINK</u>
- [7] Hong M-K, Lubis MAR, Park B-D, Sohn CH, Roh J. Effects of surface laminate type and recycled fiber content on properties of three-layer medium density fiberboard. Wood Material Science & Engineering 2018;15:163–71. HYPERLINK